Box-Benhnken 响应曲面法优化楮实子黄酮提取工艺研究

时振伟¹ 何晨阳¹ 张馨洁¹ 朱 琳² 李 洋¹ (1. 华北理工大学药学院,河北 唐山 063210) (2. 华北理工大学冀唐学院,河北 唐山 063210)

摘 要:选取液料比、浸提时间、浸提温度、乙醇体积分数进行单因素试验,采用 Box-Behnken 设计试验及响应面法分析,优化楮实子黄酮提取工艺。结果:最优提取条件为液料比 55:1 (mL:g)、浸提时间 2.8h、浸提温度 71.5℃、乙醇体积分数 60%,平均提取率为 0.3071%,与预测值相符。响应面法优化所得提取工艺科学合理、稳定可行,可用于楮实子黄酮的提取。

关键词: 楮实子; 黄酮; 提取; 响应面法

楮实子为桑科构属植物构树(Broussonetia papyrifera L. Vent.)的果实,又名楮实、楮桃等。果实含有色素等多种化学成分^[1]。研究证实该色素属于黄酮醇类黄酮化合物^[2],具有抗氧化、清除自由基、抗肿瘤等活性^[3,4]。该黄酮类色素显橙红色,色泽鲜艳、无毒副作用,适合开发成功能性保健品、天然食用色素等,具有巨大的市场前景。

目前针对楮实子黄酮提取工艺的研究较少,限制了楮 实子黄酮的开发应用。本试验利用响应曲面法^[5] 优化楮实 子黄酮提取工艺,旨在为楮实子黄酮的开发应用奠定基础。

1 材料与方法

1.1 材料与仪器

楮实子(购于中药市场); 芦丁(中国药品生物制品检定所, 纯度>95%); 其他化学试剂均为分析纯。Lambda 35 紫外可见分光光度计(美国 PerkinElmer 公司); ICC basic eco 18 恒温器(德国 IKA 公司)。

1.2 方法

1.2.1 楮实子黄酮的提取

准确称取楮实子 1.00g, 以 50mL70% 乙醇溶液在 40℃ 下浸提 3h, 抽滤并浓缩, 得提取液。

1.2.2 黄酮含量及提取率的测定

以芦丁作标准品,采用 $Al(NO_3)_3$ – $NaNO_2$ –NaOH 显色 法测定 ^[6],得回归方程为 A=12.723C–0.0121, $R^2=0.9995$,在 $0.004\sim0.028$ mg/mL 范围线性良好。同法测定黄酮含量,并计算:

总黄酮提取率%=
$$\frac{C \times V}{W} \times 100\%$$

式中: C 为楮实子提取液黄酮含量, V 为提取液体积, W 为楮实子质量。

1.2.3 单因素试验

准确称取 5 份 1.00g 楮实子,分别测定在不同液料比 (25:1、35:1、45:1、55:1、65:1 (mL:g),不同浸提时间 (1.5、2.0、2.5、3.0、3.5h),不同浸提温度 (40、50、60、70、80 $^\circ$ C) 和不同乙醇体积分数 (30%、40%、50%、60%、70%)条件下的黄酮含量,平行测定 3 次,确定最优条件。

1.2.4 响应面法优化试验

以楮实子黄酮提取率(Y)为响应值,选取液料比(A)、浸提时间(B)、浸提温度(C)及乙醇体积分数(D)4个因素。采用4因素3水平进行Box-Behnken响应面设计,

见表 1。

表 1 响应面试验因素水平表

因素	水平			
□ △ 系	-1	0	1	
A 液料比 / (mL:g)	45:1	55:1	65:1	
B 浸提时间 /h	2.5	3.0	3.5	
C 浸提温度 /℃	60	70	80	
D 乙醇体积分数 /%	50	60	70	

2 结果与分析

2.1 单因素试验

通过单因素试验,确定浸提温度为70℃、浸提时间为3h、液料比为55:1(mL:g)、乙醇体积分数为60%最佳。

2.2 响应面试验结果

响应面试验结果见表 2。

表 2 Box-Behnken 试验设计与结果

衣 Z DOX-Definited 风湿及口 与 归木							
实验	A 液	B浸提	C浸提	D乙醇体	楮实子总黄		
뮺	料比	时间	温度	积分数	酮提取率(%)		
1	0	-1	0	-1	0.2391		
2	0	0	0	0	0.3093		
3	-1	0	0	-1	0.2682		
4	0	-1	0	1	0.2531		
5	0	0	0	0	0.3158		
6	1	0	-1	0	0.2634		
7	0	-1	-1	0	0.2633		
8	1	0	0	1	0.2889		
9	0	0	1	0	0.2380		
10	0	0	0	0	0.3050		
11	0	0	1	-1	0.2315		
12	1	-1	0	0	0.2915		
13	1	1	0	0	0.2705		
14	-1	1	0	0	0.2566		
15	0	1	-1	0	0.2293		
16	0	0	1	1	0.2381		
17	-1	0	0	1	0.1912		
18	-1	0	-1	0	0.1841		
19	1	0	0	-1	0.2072		
20	-1	-1	0	0	0.2626		
21	1	0	1	0	0.2417		
22	0	1	0	1	0.2293		
23	0	0	0	0	0.3223		
24	0	-1	1	0	0.2777		
25	0	1	0	-1	0.2466		
26	-1	0	1	0	0.2669		
27	0	0	-1	1	0.2099		
28	0	0	-1	-1	0.1991		
29	0	0	0	0	0.2963		

2.3 回归模型的建立及方差分析

应用 Design-Expert 8.0.6.1 软件对表 2 进行非线性回归拟合,得回归模型: Y=0.31+0.011*A-0.0097*B+0.012*C+0.0016*D-0.0037*AB-0.026*AC+0.04*AD-0.0014*BC-

 $0.0078*BD-0.0010*CD-0.024A^2-0.016*B^2-0.043*C^2-0.048*D^2_{\odot}$

方差分析结果见表 3。本实验所建立的回归模型 F= 28.36, P < 0.0001, 达到极显著差异水平,同时失拟误差 P= 0.5822 > 0.05,失拟误差不显著,表明该模型有较高的可信度,建立的模型回归系数 R^2 =0.9659, R^2 _{Adj}=0.9319,说明该回归模型拟合度好,自变量与响应值之间相关性显著,模型具有良好的可行性,可用于模拟预测楮实子黄酮提取率。对提取率影响程度的顺序为: C > A > B > D。

表 3 回归模型方差分析表

	秋 5 日 7 K 工 7 工 7 研 农							
方差来源	平方和	自由度	均方	F值	P值	显著性		
模型	0.037	14	2.666×10^{-3}	28.36	< 0.0001	**		
Α	1.485×10^{-3}	1	1.485×10^{-3}	15.80	0.0014	**		
В	1.139×10^{-3}	1	1.139×10^{-3}	12.12	0.0037	**		
С	1.750×10^{-3}	1	1.750×10^{-3}	18.62	0.0007	**		
D	2.963×10^{-5}	1	2.963×10^{-5}	0.32	0.5833			
AB	5.556×10^{-5}	1	5.556×10^{-5}	0.59	0.4548			
AC	2.729×10^{-3}	1	2.729×10^{-3}	29.04	< 0.0001	**		
AD	6.305×10^{-3}	1	6.305×10^{-3}	67.08	< 0.0001	**		
BC	8.305×10^{-6}	1	8.305×10^{-6}	0.088	0.7706			
BD	2.453×10^{-4}	1	2.453×10^{-4}	2.61	0.1285			
CD	4.366×10^{-6}	1	4.366×10^{-6}	0.046	0.8325			
A^2	3.870×10^{-3}	1	3.870×10^{-3}	41.18	< 0.0001	**		
B^2	1.726×10^{-3}	1	1.726×10^{-3}	18.37	0.0008	**		
C^2	0.012	1	0.012	128.48	< 0.0001	**		
D^2	0.015	1	0.015	160.73	< 0.0001	**		
残差	1.316×10^{-3}	14	9.399×10^{-5}					
失拟 误差	9.197×10^{-4}	10	9.197×10^{-5}	0.93	0.5822	不显 著		
纯误 <i>差</i>	3.962×10^{-4}	4	9.904×10 ⁻⁵					
总和	0.039	28						

注: * 差异显著, P < 0.05; ** 差异极显著, P < 0.01; R^2 =0.9659; R^2_{Adj} =0.9319。

2.4 响应面分析

由表 2 得到各因素交互作用的响应面图,见图 1。A 与 C, A 与 D, B 与 C 的响应曲面较陡,表明其相互作用对提取率影响强烈,而 B 与 D、A 与 B 以及 C 与 D 的响应曲面较平缓,影响较小。软件分析得出提取条件为液料比 55:1 (mL:g)、浸提时间 2.84h、浸提温度 71.44 $^{\circ}$ 、乙醇体积分数 60.41%,预测值为 0.3122%。考虑实际实验条件,修订为液料比 55:1 (mL:g)、浸提时间 2.8h、浸提温度

(上接第70页)烟气量瞬间发生变化导致压力改变,而风机又无法及时调节,很容易造成其他管式炉压力波动,触发安全联锁而紧急停车。所以需要安装一套压力平衡装置,精确平衡各个管式炉压力,当个别管式炉故障停工时,压力平衡装置可以及时调整,保证其他管式炉压力不受影响。

3 实际应用情况

邢台旭阳煤化工自采用移动床干法脱硫 +SCR 脱硝一体化工艺以来,装置运行稳定,烟气指标良好,净化后的烟气二氧化硫、氮氧化物、颗粒物可以长期稳定控制在 10mg/m³、30mg/m³、10mg/m³以下,烟气指标好于预期,实现管式炉烟气超低排放,此工艺应用于化工装置管式炉烟气净化,属行业首例,为同行业烟气治理提供了全新方案及经

71.5℃、乙醇体积分数 60%。3 次平行实验得平均提取率为 0.3071%, RSD=0.82%。

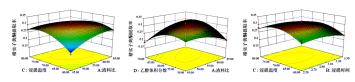


图 1 各因素交互作用对楮实子黄酮提取率的响应面图 3 结论

最优提取条件为液料比 55:1 (mL:g)、浸提时间 2.8h、浸提温度 71.5℃、乙醇体积分数 60%,提取率为 0.3071%。各因素对提取率影响为:浸提温度>液料比>浸提时间>乙醇体积分数。试验结果为楮实子黄酮的制备提供参考,并可为楮实子黄酮进一步的开发利用提供基础。

参考文献:

- [1] 张静,王文林,彭海燕.中药楮实子的研究现状与展望 [J]. 中华中医药学刊,2014,32(1):75-78.
- [2] 林少琴,兰瑞芳. 构树果色素的分离提取及部分性质研究[[]. 林产化工通讯,2000(2):9-12.
- [3] NAVEEN KUMAR N, RAMAKRISHNAIAH H, KRISHNA V, et al. Cytotoxic activity of Broussonetia papyrifera (L.) vent on MCF-7, HeLa and HepG2 cell lines [J]. International Journal of Pharmacy and Pharmaceutical Sciences,2014,6(5): 339-342.
- [4] LI Y, SHANG X, NIU W, et al. Inhibitory activity of the extract from Broussonetia papyrifera fruits to cellular lipid peroxidation in vitro [J]. Asian Journal of Chemistry,2014, 26(1):201-204.
- [5] 何晨阳, 刘明月, 时振伟, 等. 响应面法优化蛇莓花色苷 浸提工艺及稳定性研究 []]. 中草药, 2018, 49(8):1829-1834.
- [6] 葛水莲,陈建中,刘娜,等.响应面优化大孔树脂纯化太 行菊总黄酮及其降糖活性[J].食品工业,2020,41(5):107-111.

通讯作者:

李洋(1983-), 男, 汉族, 河北唐山人, 研究生, 讲师, 研究方向天然产物的化学与药理作用。

基金项目: 华北理工大学大学生创新创业训练计划项目 (X2018019)

验,具有重大推广意义。

参考文献:

- [1] 赵殿五. 氮氧化物的来源、危害及治理方法简介 [J]. 环境科学研究,1977(02):43-48.
- [2] 苗社华. 半干法脱硫+低温 SCR 脱硝一体化工艺在焦炉烟气净化中的应用 [J]. 科学技术,2018(5):157-158.
- [3] 冯金煌,徐剑.焦炉烟气净化工艺选择与工程实践[J].宝钢技术,2018(3):22-26.
- [4] 王晓东.SCR 脱硝工艺的研究[J]. 山西化工,2018(05):138-139.

作者简介:

牛敬超(1987-),男,汉族,河北邯郸人,本科,工程师,邢台旭阳科技有限公司,研究方向:煤化工方向。