海上油田水系统防垢剂评价及应用

李鹏冲(中海石油(中国)有限公司天津分公司,天津 300450)

王 勇 张国欣 张 勇 张妙玮(中海油(天津)油田化工有限公司,天津 300452)

摘 要: 针对海上B油田生产污水水质高矿化度、高碱度、具有很强的结垢倾向等特点,实验室在分析研究了目标油田水样离子组成的基础上,以丙烯酸(AA)、单体 E、单体 F、2- 丙烯酰胺 -2- 甲基丙磺酸为原料(AMPS),合成出新型防垢剂产品 FG-08。实验结果表明,在加药浓度为 20 mg/L,试验温度 $95 ^{\circ}$ C,作用时间为 20 h,防垢剂 FG-08 对水样的防垢率能达到 $95 ^{\circ}$ 6 以上,防垢效果优于常用防垢产品。

关键词:海上油田;防垢剂;防垢率;性能评价

海上 B 油田位于渤海湾地区,油田生产污水水质高矿化度、高碱度、具有很强的结垢倾向,油田经过一段时间的开发后,水处理设备内壁产生严重结构现象,如无有效措施,极易形成垢下腐蚀,严重影响油田的安全生产[1-2]。因此,为解决生产污水结垢的问题,室内通过水溶液聚合法合成了一种新型防垢剂产品 FG-08,在分析了 B 油田生产污水离子组成后,对生产污水的静态结垢量进行了测定,并在此基础之上,评价了防垢剂 FG-08 的防垢效果,并与常用防垢剂进行了性能对比。为解决 B 油田生产污水结垢问题提供一定的技术支持和保障。

1 实验部分

1.1 药剂与仪器

B油田生产污水、丙烯酸(AA)、单体 E、单体 F、2-丙烯酰胺 -2-甲基丙磺酸(AMPS)、亚硫酸氢钠、过硫酸铵、氢氧化钠溶液、乙二胺四乙酸二钠(EDTA)、钙指示剂。

电感耦合等离子体光谱仪、DJP-20-I 动态结垢模拟装置、AE204 电子天平、TW-12 恒温水浴锅、HGC 恒温干燥箱、四口烧瓶、恒压滴液漏斗、温度计。

1.2 防垢剂的合成

将一定量的去离子水加入至 500mL 的四口烧瓶中,加入规定浓度的亚硫酸氢钠、2-丙烯酰胺 -2-甲基丙磺酸(AMPS)、单体 E、单体 F,升温至 50-60℃,将丙烯酸和过硫酸铵水溶液分别加入恒压滴液漏斗,缓慢滴加 1h,待滴加完毕后将温度保持在 85-90℃,搅拌 4h 后,得到了微黄色防垢剂 FG-08。

1.3 试验方法

1.3.1 水样离子组成分析方法

使用电感耦合等离子体光谱仪,参照石油天然气行业标准 SY/T5523《油田水分析方法》,对海上 B 油田生产水的离子组成进行分析。

1.3.2 防垢率测定方法

参照石油天然气行业标准 SY/T 5673《油田用防垢剂性能评定方法》,测定加入防垢剂前后,水样中成垢离子的浓度变化情况,来评价防垢剂的防垢效果。

防垢率计算公式如下:

$$A = \frac{V_2 - V_1}{V_0 - V_1} \times 100\%$$

式中:

A - 防垢率, %;

 V_0 - 防垢实验前溶液消耗 EDTA 的体积, mL;

V, -溶液未加防垢剂实验后消耗 EDTA 的体积, mL;

V₂ -溶液加入防垢剂实验后消耗 EDTA 的体积, mL。

1.3.3 动态防垢率评价

①将实验用管径 3mm 的不锈钢管线依次用 10% 的盐酸溶液、蒸馏水、5% 氢氧化钠溶液清洗,后用无水乙醇带出管线中的水分。在 105℃下烘至恒重,称重误差为±0.0002g; ②实验用滤膜在 85℃下烘至恒重,称重误差为±0.0002g; ③结垢实验;④在实验温度压力条件下,模拟水注入实验流程,实验流速 8mL/min; ⑤实验过程中观察实验压力变化情况,并每隔 100mL 记录压力及累积注入量,当压力急剧增加时,停止实验,若压力变化不明显,累计注入 5L 后,结束实验;⑥注入蒸馏水 200mL 清洗管线中的盐分,整个实验过程包括安装及清洗需 10h~12h; ⑦按照①恒重管线及滤膜。通过质量差计算结垢量,管线烘干需至少 48h。

2 结果与讨论

2.1 水样离子组成分析结果

参照 1.3.1 中的实验方法,对海上 B 油田生产污水离子成分进行了分析,结果如表 1 所示,目标油田生产污水中成垢阳离子 Ca^{2+} 和 Mg^{2+} 的含量较高,水型为高硬度、高碱度水质,总矿化度为 30931mg/L 左右,水质结垢倾向严重。

表 1 现场水质数据表

检测内容	mg/l	毫摩尔 /l	毫摩尔 /%					
Determianation contents	mg/L	mmol/L	mmol/%					
Na ⁺	9914.78	431.08	37.96					
K ⁺	120.45	3.09	0.27					
Mg ²⁺	1005.22	41.33	7.28					
Ca ²⁺	1021.89	25.50	4.49					
Total	12062.34	567.83	50.0					
Cl ⁻	17757.49	500.92	47.97					
SO ₄ ²⁻	677.65	7.06	1.35					
HCO ₃	434.05	7.11	0.68					
CO ₃ ²⁻	0.00	0.00	0.00					
TOTAL	18869.19	522.15	50.0					
I-	/	总矿化度 Total salinity(mg/L):30931.53						
Br-	/	总硬度 Total hardness(H):374.25						
В	/	永久硬度 Pernanent hardness(HP):354.34						
Fe ²⁺	0.17	暂时硬度 Temporary hardness(HT):19.91						
Fe ³⁺	0.48	总碱度 Total basicity(A):7.11						
水型	Magnesium chloride							
Type of water	$(C1^{-}-Na^{+})$ $/2Mg^{2+}=0.81$	(Na^+-C1^-) /2SO ₄ ² =/						

2.2 结果与讨论

2.2.1 防垢剂的表征

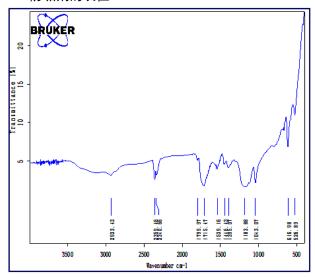


图 1 防垢剂 FG-08 红外光谱图

由红外图谱 1 可知,2903 cm^{-1} 处为 $-\text{CH}_2$ - 伸缩振动峰,1446、1395 cm^{-1} 处为 C-H 键的弯曲振动峰,3300 cm^{-1} 处为 羧基振动峰,1043 cm^{-1} 处为 -P-O 伸缩振动吸收峰,这些特征峰完全符合目标产品防垢剂 FG-08 的结构特征。

2.2.2 与常用防垢剂静态评价性能对比

参照 1.3.2 中的实验方法,在实验温度为 95 ℃时,加药浓度 20mg/L,与常用防垢剂 PBTC、HEDP、PESA、PAAS,对海上 B 油田生产污水进行了静态防垢率评价,由图 3 所示防垢剂 FG-08 在加注 20mg/L 时,防垢率最高为 95.3%。

2.2.3 与常用防垢剂动态评价性能对比

参照 1.3.3 中的实验方法,在实验温度为 95 ℃时,压力 1 MPa,选择加药浓度 20 mg/L,对海上 B 油田生产污水进行了动态防垢率评价,实验结果如表 2 所示,防垢剂 FG 08 的水样中单位体积垢重为 0.0078 mg/L,均优于其他常用防垢剂产品。

防垢剂类型	HEDP	PAAS	PBTC	PESA	FG-08
高压管垢重 (mg)	0.0585	0.0342	0.0615	0.0327	0.0163
高压膜垢重 (mg)	0.0253	0.0185	0.0175	0.023	0.009
低压管垢重 (mg)	0.0085	0.0023	0.0065	0.0025	0.0045
低压膜垢重 (mg)	0.0031	0.0005	0.0043	0.0012	0.0012
总垢重 (mg)	0.0954	0.0555	0.0898	0.0594	0.031
累积体积 (L)	4.0	4.0	4.0	4.0	4.0
单位体积垢重 (mg/L)	0.0239	0.0139	0.0225	0.0149	0.0078
高压区占总垢重比例(%)	87.8	95.0	88.0	93.8	81.6

表 2 防垢剂动态评价结果

2.2.4 防垢剂加量对防垢率的影响

参照 1.3.2 中的实验方法,评价了防垢剂 FG-08 加量对防垢率的影响,实验用水样为海上 B 油田生产污水,实验温度为 95℃,实验时间为 24h。实验结果如图 2 所示,随着防垢剂 FG-08 加量的增大,防垢率逐渐增大,当防垢剂加量为 20mg/L 时,防垢率达到 95% 以上,继续增大防垢剂加量,防垢率增加的幅度不大。因此,防垢剂 FG-08的最佳加量为 20 mg/L。

2.2.5 作用时间对防垢率的影响

参照 1.3.2 中的实验方法,评价了作用时间对防垢率的影响,实验水样为海上 B油田生产污水,实验温度为

95℃,防垢剂 FG-08 加量为 20mg/L。实验结果如图 3 所示,随着作用时间的不断延长,防垢剂 FG-08 在生产水中的防垢效率先上升再逐渐下降,因此,防垢剂 FG-08 的作用时间选择 20h,但当作用时间为 80h时,防垢率仍能达到85%以上,说明防垢剂 FG-08 具有较好稳定性,在较长时间的范围内仍能保持良好的防垢效果,达到长效防垢的目的。

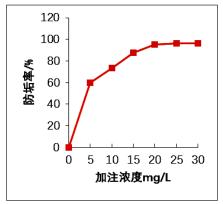


图 2 防垢剂加量对防垢率的影响

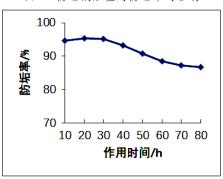


图 3 作用时间对防垢率的影响

3 结论

①针对海上 B 油田生产污水结垢现象严重等问题,室内合成了一种新型防垢剂 FG-08,通过红外图谱特征峰分析,合成的产物为目标防垢剂;②对目标油田水样离子组成进行了分析和测定,并在此基础上评价了防垢剂 FG-08 的防垢性能。结果表明,防垢剂 FG-08 在加注浓度 20mg/L时,B油田生产水的防垢率能够达到 95% 以上,且随着作用时间的延长,防垢剂的防垢效率虽略有下降,但当作用时间为 80h 时,防垢率仍能达到 85% 以上。与常用防垢剂相比,新型防垢剂 FG-08 具有更好的防垢效果。

参考文献:

- [1] 杜启凡.海上油田注入水配伍性研究及防垢剂性能评价 [[]. 能源化工,2019,40(3):51-55.
- [2] 陈峰, 赵春辉, 陈朝林. 油田注水系统结垢机理研究. 油气田地面工程 [[],2006,25(7):7-8.

作者简介:

李鹏冲(1978-),男,河北承德人,工程师,硕士,主要从事油气田生产。

通讯作者:

王勇(1982-),男,四川遂宁人,工程师,硕士,2006年 毕业于西南石油大学高分子材料与工程专业,主要从事油 田化学品研究。