关于瓦斯监测预警体系在矿井安全生产中的应用研究

史芳芳(山西汾西中兴煤业有限责任公司,山西 交城 030500)

摘 要: 为了准确预警矿井井下作业瓦斯灾害情况,煤矿企业应合理应用瓦斯监测预警体系,及时异地报警, 为人员提供避灾时间,最大程度的降低安全事故的发生几率、提高煤矿的生产效益。

关键词:煤矿;瓦斯监测预警体系;安全生产

当前主要利用甲烷传感器等声光报警装置完成瓦斯超限的声光报名,但传感器的强度较小,仅在 20m 范围内可见报警信号,一旦井下发生瓦斯超限问题,只有甲烷传感器附近的工作人员可以感知,其他人员无法准确获得瓦斯灾害预警信息,延缓救灾行动。对此,煤矿企业应在井下开采期间应用瓦斯监测预警系统,以连续实时监控井下各采矿点瓦斯浓度变化情况,保证及时预警,为开采人员提供安全的工作环境。

1 煤矿瓦斯风险预警指标体系构建原则

煤矿瓦斯预警属于灾害预警的组成部分,主要根据 煤矿安全生产中的瓦斯风险因素,确定相应的指标体系 与等级标准,以准确分析判断各种瓦斯风险问题,确定 风险的运行状态,以此确定临界值的远近,制定风险等 级标准,针对不可接受的瓦斯风险发出相应的预警信息, 提醒相关工作人员提前做好各种应急准备,避免产生不 可接受的经济损失,保证安全预警系统始终处于稳定运 转的轨道中。具体而言,煤矿瓦斯风险预警指标体系构 建应遵循以下几个原则:

①系统的整体性,包括构建指标体系的目的性、层 次结构性、关联性以及适用性等方面。目的性主要指的 是工作人员应准确识别瓦斯安全隐患,及时预警,建立 可行的预警指标体系;整体性指的是工作人员分析瓦斯 危险源的相关因素,可能由整体指标导致也可能由单一 指标导致。瓦斯安全预警并非简单的集合指标, 而是确 定指标间的相互关系,以实现风险预紧的整体功能。为 了保证预警结果反映出整体特点, 应实现参评指标的多 样性,并不断完善改进;层次结构性,指的是根据不同 层次预警指标设定体系,结合相互作用关系构建系统层 次结构,由一定层次结构的预警指标组成预警体系;关 联性指的是在考虑瓦斯预警指标体系中各指标关联关系 的基础上,实现有效驱动;适应性指的是在建立任何指 标时应保证实用性与可操作性; ②科学性, 矿井瓦斯事 故的发生具备一定规律,应根据理论与实践经验确定瓦 斯安全风险指标,保证指标设定的客观性与科学性,概 念明确; ③指标的普遍性与特殊性, 工作人员在建立指 标时应遵循特殊与普遍原则, 以更好的处理特殊事故, 保证评价的特殊性; ④可量化性, 在指标体系建立过程 中,工作人员应不断量化指标,遵循定量原则确定多指 标的预警体系,保证预警的准确性,也实现指标参数的 量化特性。需要注意的是, 瓦斯危险源属于事故发生的 具体原因,根据不同的瓦斯事故,危险源也会表现出不同特点,识别与控制方式也各不相同,具体瓦斯危险源较多,包括人、机、环境等多个方面。

2 煤矿瓦斯安全监控预警系统组成与运行原理

2.1 系统功能

煤矿瓦斯安全监控系统具备声光报警、控制、传输显示、收集以及控制能功能,可以有效监测一氧化碳与甲烷浓度,实时了解井下作业面馈电、风速、温度、风筒状态、主通风机开停等状态,根据既定的预警指标,一旦井下作业发生瓦斯危害,可以实现异地报警。

2.2 系统组成

煤矿井下安全监控系统由主机、传输接口、传感器、电缆、电源箱以及执行器等模块组成,且系统中心站包括主机、网络交换机、服务器、USP电源、传输接口以及配套设备等构成。

2.3 系统运行原理

①传输接口与分站通信连接安全监控系统, 分机接 收主机询问信号,传输各测点具体信息,完成远距离发 送信号工作。主机接收信号后,通过传输接口有效隔离 地面非本质安全型电气设备与井下安全型防爆电器设 备。将各测点信息传输至主机系统,在接收分站远距离 发送的信号后完成处理。运行期间, 分站随时等待主机 询问,检测并有效处理传感器信号,为地面送达监测参 数。主机发出巡检信号与控制命令,分站负责传输至远 程控制设备,以有效控制井下设备;②传感器系统,转 变监测的物理信号,实现声光报警;③转变执行机构信 号,输出物理量;④分站接收传感器信号,并分析后传 输至主站。在此期间,分站完成逻辑运算、输入信号以 及执行机构等操作; ⑤电源箱将交流电信号转变为电源 需要的本质安全型直流电源信号;⑥主机处理分站远距 离接收的信号,并在此发回至分站。传输接口调制、解 调多路复用信号,完成系统自检;⑦主机选择微型计算 机,由双机备份数据。其中主机监测鉴别接收信号,存 储统计信息数据,完成声光报警。

2.4 系统特点

煤矿井下开采环境较为特殊,存在较多易燃易爆气体,腐蚀性较强,电网波动范围较大,存在严重的电磁 干扰信号,无法有效监控。

①电气防爆,煤矿监控系统运行环境存在较多瓦斯与煤尘,环境复杂,必须使用防爆电气设备;②存在较

远的传输距离,工作监控系统传输距离较近,而煤矿监 控系统传输距离较远,甚至会达到十几千米;③网络系 统采用树形结构, 监控系统可以根据电缆与电杆的基本 情况设置星形与树形等结构,自由度更大。煤矿开采期 间敷设电缆时应结合岩巷敷设情况,挂靠巷道壁。巷道 长度达到数千米、采用分支结构、为了降低电缆传输距 离,应采用树形结构,保证安装维护效果;④四是监控 对象变化缓慢,煤矿监控系统存在既定监控容量,主要 监控缓变量对象,传输速度较慢;⑤电网波动范围较大, 煤矿开采空间较小,存在严重的电磁干扰问题,采煤大 型设备及架线机车运行期间受信号干扰; ⑥煤矿井下开 采环境存在浓度较大的甲烷、一氧化碳等易燃易爆气体, 环境恶劣,且矿下潮湿,腐蚀性较大,需要应用防爆、 防潮以及防腐蚀等设备: ⑦利用传感器进行远程供电, 一般工业系统对防爆功能要求不高,使用较低水平的供 电电源即可。而传感器等执行机构大多设置于恶劣的作 业环境,不官采用就地供电模式,大多实行远距离供电; ⑧不宜采用继电器,煤矿井下作业环境比较恶劣,监控 距离较远,而继电器属于有源设备,系统安全性较高, 受电气防爆设备的限制,不好取电源,因此应采用远距 离供电方式,并增加电芯线,不宜采用继电器系统。

3 煤矿瓦斯安全监控预警系统的实例应用 3.1 技术路线

某煤矿企业结合安全监控系统以及安全规程等相关 规定, 监控系统中甲烷传感器设置报警值设定不超过 1%, 断电值设定不超过1.5%。为了有效区别是否发生 瓦斯灾害, 预警系统还应设置甲烷传感器报警点与断电 点,增加联动报警参数。管理人员在设置参数时应结合 矿井实际管理情况,以避免甲烷超限等问题,保证矿井 的安全生产, 当出现瓦斯危害时, 系统采集周围环境瓦 斯浓度,一旦超出安全阈值,通过预警系统向各个节点 发出声光报警信号,及时联动报警。

3.2 系统技术指标

预警光信号为红色,光强度直巷 100m 处可见,报 警声级≥110 dB。当监控系统进行声光报警时, 矿用本 安电源运行 30min, 且具备报警解除、异地报警以及远 程控制等功能。

3.3 系统研发与具体应用

3.3.1 研制环节

研发期间,工作人员模拟试验研究瓦斯灾害预警指 标与相关参数,确定系统预警指标体系,在系统报警状 态下试验系统电源供电参数,区分甲烷传感器报警信号, 调整声光报警器报警节奏、报警频率以及巷道信号的可 视距离,提高声光报警器的光强度与预警声级。

3.3.2 安装环节

为了实现高效精确报警,安装甲烷传感器时应设置 合理的联动预警参数,为监控系统增加联动报警值、断 电值等,改进系统软件。甲烷传感器应完成断电控制信 号与本地报警信号的预报工作,保证实现预期的联动报

警控制效果。异地联动报警系统应设置于地面中心,增 加预警窗口,并设置合理的断电、报警以及复电等参数 值,明确报警逻辑关系。

3.3.3 重新设计后备电源

报警状态下,声光报警器无法长时间监控电源,为 了延长工作时间,还应重新设计后备电源。预警系统防 爆电源应根据声光报警器与本安电源实际距离确定安装 位置,采用 4 路 18V 本安电源输出,设置每路输出声光 报警器的数量。同时,还应根据传输距离确定声光报警 器数量与电缆末端压降,避免压降过大,以免影响声光 报警器响度,无法达到预期的使用要求。

3.3.4 增加预警屏蔽功能

在特定条件下, 声光报警系统可以实现预警系统的 屏蔽,将预警控制开关安装至掘进工作面风门外或采面 回风巷道中,严格控制预警单元开关。比如在高浓度甲 烷传感器热导元件校正前, 应将预警开关关闭, 避免作 业期间出现报警问题。

3.3.5 增加断电值预警指标

为了保证报警系统的正常运行,增强兼容性,还应 将甲烷传感器断电值增加至联动预警指标中,根据既定 程序的运行状态设置系统预警值,在预警指标数值较低 区域,将甲烷传感器断电点值设定为≥ 0.5%,不能修改 系统主程序,不得随意更改,避免煤矿开采期间,系统 频繁报警。

3.4 应用效果

系统被应用至多个工作面,可以准确预警分析突出 危险性,给出报警信息,提高了防突工作的精细化管理 水平,减少防突工作量,保证智能化、实时性、多参量 的超前预警,全面提高了煤矿瓦斯灾害的防治水平。具 体见下表1所示。

	工作面名称		西回风巷	东回风巷	北三区巷道
-	日常预测	状态	19	17	28
		趋势	20	17	22
	采掘影响	状态	0	0	0
		趋势	0	0	0

表 1 预警系统报警次数统计表

4 结束语

煤矿开采期间应用瓦斯预警监测系统,可以保证不 同安全监控系统的并行运行,有效预警瓦斯超限与瓦斯 突出等灾害问题,并通过火灾、水灾等模拟演练,提高 开采人员的技术能力,保证其有效避灾,避免发生安全 事故问题, 提高煤矿企业的经济与社会效益水平。

作者简介:

史芳芳(1982-), 男, 山西长治人, 2015年1月毕业 于东北大学, 机械工程及自动化专业, 本科, 现为工程 师。