电解水制氢成本分析及降本措施

刘 雷(水木明拓氢能源科技有限公司,内蒙古 包头 014000)

摘 要:目前的电解水制氢技术中,碱性水电解槽因技术成熟、成本低依然是市场应用主体。通过建立电解水制氢 LCOH 模型,开展制氢平准化成本分析,首先进行制氢成本量化分析,然后进行影响因素敏感性分析。结果表明,制氢成本中电耗成本占比80%,电价每降0.05元,制氢成本平均降低4%;运行时间影响制氢成本,年运行时间每增加500h,制氢成本可降低3%;制氢成本中固定成本折旧占比12%,固定投入每减少10%,制氢成本可降低1%;回收副产氧气作为产品利用或销售,可抵减12%的制氢成本。

关键词: 电解水; 电解槽; 制氢; 成本; 降本措施

0 前言

随着 CO₂ 排放、气候变暖问题加剧,全球主要国家于 2016 签订了《巴黎气候协定》,并纷纷制定 CO₂ 减排计划,我国于 2020 年宣布了自己的"双碳目标",即 2030 年碳达峰,2060 年碳中和。为了实现这一政策目标,氢能因为其可再生、可存储、无污染等优势,已成为未来能源发展的重要方向之一,被视为实现"双碳"目标必由之路。

自然界的氢元素以化合物存在,氢气主要通过化石燃料制氢、工业副产氢、电解水制氢三种途径。化石燃料制氢技术成熟、成本在 0.9-1.5 元 /Nm³, 市场占有率约 81%, 但生产过程排放大量 CO₂, 产能扩张有限。

工业副产氢能提高资源利用效率和经济效益,成本在 0.8-2.0 元/Nm³, 市场占有率约 18%, 但受上游产业限值,可作为制氢的过渡路线。电解水制氢目前市场占有率不到 1%, 但通过可再生能源电解水制的氢气称为"绿氢",能够有效解决可再生能源消纳、能源危机、CO₂ 排放等问题,成为未来氢能源发展主要方向,

2022 年我国氢气产能约 3300 万 t/a,占全球氢气产能 30%,主要作为工业原料使用,氢能应用较少,未来随着氢能技术推广,可广泛应用在化工、冶金、交通、电力等行业。预计 2030 年,我国氢气需求量达到 6000 万 t/a,产能增量主要由电解水制氢满足,电解水制氢产能达到 2000 万 t/a,市场占有率将由目前不足 1% 提升至 35%。

1 电解水制氡技术分析

电解水制氢是通过电提供能量,将水在电极上分解为氢气和氧气。电解水的主要生产设备是电解槽,按照电解质不同,可将电解槽分为3类,即碱性电解

槽(ALK)、质子交换膜电解槽(PEM)、固体氧化物电解槽(SOEC)。

通过收集各类电解槽数据,对比各类电解槽技术性能(见表1)。

表 1 电解槽技术性能对标表

电解槽类型	ALK	PEM	SOEC
电解质	20-30% KOH/NaOH	质子膜	Y_2O_3/ZrO_2
电解效率 (%)	60-75%	70-90%	85-100%
能耗(kWh/Nm³)	4.5-5.5	3.8-5.0	2.6-3.6
工作温度(℃)	70-90	70-80	600-1000
工作压力 (MPa)	0.1-3	3-8	0.1
电流密度 (A/cm²)	0.2-0.4	1.0-2.0	1.0-10
电堆寿命 (h)	120000	100000	
单槽规模(Nm³/h)	1-3000	1-500	
设备成本 (万元/WM)	130-150	500-800	
载荷范围 (%)	30-100	0-160	20-100
启动时间	60min	5min	启停慢
商业应用	应用成熟	小规模应用	实验阶段

通过技术分析对比可知:

碱性水电解槽技术成熟,投资低,适合大规模场景,是目前电解水制氢主流技术;质子交换膜电解槽技术启停快,但设备成本高,适合小规模应用;固体氧化物电解槽效率高,目前还处于实验开发阶段。所以未来中短期内碱性水电解槽依然是市场应用主体,下面主要选用碱性水电解槽进行制氢平准化成本分析。

2 制氢平准化成本分析

2.1 假设条件

本文以 100MW 离网型风光制氢项目为例,选用碱

中国化工贸易 2023 年 6 月 -49-

性水电解槽制氢,氢气产量2万Nm³/h,建设内容包括电气、制氢、公用、储运等单元装置,总占地约200亩。

①设备选型:选用 20 台 1000Nm³/h 的碱性水电解槽;②原料成本:电价 0.3 元/kWh,水价 10 元/t;③运行时间:年有效运行时间取 3000h;④产品方案:单产氢气,副产氧气排空;⑤劳动定员:共计 40 人,人均 15 万元/a;⑥资金来源:全部自筹;⑦运行期限:20 年。

2.2 成本模型

采用平准化成本(LCOH)分析方法,从全生命 周期量化分析电解制氢成本,将所需的固定成本和可 变成本折算到每标方氢气。固定成本包括土地、设备、 建设成本,可变成本包括电耗、水耗、人工、运维成 本。

由此可以倒推出制氡成本计算公式。

平准化成本 = 固定成本 + 可变成本

固定成本 = 总投资 / (年产出 × 运行周期)

可变成本 = (年人工费 + 年运维费)/年产出 + 电价 × 单位电耗 + 水价 × 单位水耗

2.3 量化分析

2.3.1 固定成本

根据行业同类项目建设投资情况,估算出 100MW 离网型风光制氢项目建设投资总投资约 42000 万元,设备购置费用占据项目总投资 70%,其中制氢设备占42%,公辅设备占28%;建设安装费用占20%;工程设计费用占5%,土地使用费占3%,项目管理成本占2%。计算出各单项投资费用如表2。

单项费用	投资占比(%)	投资金额 (万元)
设备购置	70	29400
施工安装	20	8400
工程设计	5	2100
土地使用	3	1260
项目管理	2	840
总成本	100	42000

表 2 单项投资表

项目建设总投资全部计入固定投资,固定投资折旧根据运行周期直线无残值折旧,平摊到制取每方氢气的固定成本如下:

固定成本 =42000 万元 / (6000 万 $\mathrm{Nm}^3/\mathrm{a} \times 20$ 年) =0.35 元 / Nm^3

2.3.2 可变成本

可变成本 = (年人工费 + 年运维费) / 年产出 + 电价

× 单位电耗 + 水价 × 单位水耗 = $(600 \, \text{万元} + 900 \, \text{万元})$ / $6000 \, \text{万} \, \text{Nm}^3 + 0.3 \, \text{元} \, \text{/kWh} \times 5 \, \text{kWh} / \text{Nm}^3 + 10 \, \text{元} \, \text{/t} \times 0.001 \, \text{t} / \text{Nm}^3 = 0.25 \, \text{元} \, / \text{Nm}^3 + 1.5 \, \text{元} \, / \text{Nm}^3 + 0.01 \, \text{元} \, / \text{Nm}^3 = 1.76 \, \text{元} \, / \text{Nm}^3$

①年运维费:每年运维成本按设备总成本 3% 核计,900 万元/a;②年人工费:劳动定员 40 人,人均 15 万元/a,600 万元/a;③电价:按照新能源电价 0.3 元/kWh;④电耗:单位电耗 5kWh/Nm³;⑤水价:按照工业用水 10 元/t;⑥水耗:单位水耗 0.001t/Nm³。

2.3.3 平准化成本

平准化成本 = 固定成本 + 可变成本 =0.35 元 /Nm³+ 1.76 元 /Nm³=2.11 元 /Nm³

根据平准化成本计算得出本模型下电解水制氢成本为 2.11 元 /Nm³,依然高于化石燃料制氢成本。通过固定成本和可变成本单项计算,计算出各单项成本及占比如表 3。

表 3 单项成本表

72 7777				
成本类别	单位成本 (元/Nm³)	成本占比 (%)		
固定成本	0.35	16.5		
运维成本	0.15	7		
人工成本	0.10	5		
电耗成本	1.50	71		
水耗成本	0.01	0.05		
总成本	2.11	100		

根据平准化成本组成占比,其中电耗成本最高, 占总成本71%;其次为固定成本,占总成本16.5%, 主要电解槽成本较高;水耗成本占比0.05%,对电解 水制氢成本影响较小。

3 制氢成本影响因素敏感性分析

3.1 电价影响分析

假设其他条件不变,分别选取 0.1-0.5 元/kWh 各阶段电价,根据平准化成本模型,计算不同电价对应的电解水制氢成本如下表。

表 4 电价对应制氢成本计算统计表

电价 (元 /kWh)	电耗成本 (元 /Nm³)	制氢成本 (元 /Nm³)	成本占比 (%)
0.1	0.5	1.11	45
0.15	0.75	1.36	55
0.2	1	1.61	62
0.25	1.25	1.86	67
0.3	1.5	2.11	71
0.35	1.75	2.36	74

0.4	2	2.61	76
0.45	2.25	2.86	78
0.5	2.5	3.11	80

根据计算数据,电价成本与制氢成本成正比例关系;电价每降 0.05 元,制氢成本降 0.25 元/kg,氢气成本平均降低 4%。通过分析结果,可见降低电价是制氢降本的最主要途径。

3.2 运行时间影响分析

假定其他条件不变,延长电解槽工作时间,生产 更多氢气摊薄固定成本,降低制氢成本。分别选定电 解槽每年 2000~4500h 范围内运行时间,计算得出不 同运行时间对应的制氢成本如表 5。

	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Γ	运行时间	氢气产量	制氢成本	成本变化	
L	(h/a)	(万 Nm³/a)	(元/Nm³)	(%)	
	2000	4000	2.41	114	
	2500	5000	2.23	106	
	3000	6000	2.11	100	
	3500	7000	2.02	96	
	4000	8000	1.96	93	

1.91

表 5 运行时间与制氢成本计算数据统计表

根据表 4 计算数据,从 3000h-4500h,运行时间每增加 500h,制氢成本平均降低 3%。从 3000h-2000h,运行时间每减少 500h,制氢氢气成本平均增加 6%,所以电解水制氢项目建设选址应在风光资源丰富的沿海、三北地区,同时根据综合效益配备一定的储能装置,提高每年运行时间来降低制氢成本。

9000

3.3 设备选型影响分析

假设其他条件不变,选用不同规模电解槽,进行制氢成本分析。目前市场上有 1000Nm³/h、2000Nm³/h、3000Nm³/h、4000Nm³/h 碱性水电解槽,后期会有 5000Nm³/h 或更大的电解槽上市。单槽规模越大,电解槽制造材料更加节约,成本降低。电解槽规模扩大 1000Nm³/h,固定成本降低 10%,通过计算不同规模电解槽对应的制氢成本,得出以下数据如表 6。

表 6 不同规模电解槽对应制氢成本统计表

7				
规模	数量	固定成本	制氢成本	占比
(Nm³/h)	(台)	(万元)	(元/Nm³)	(%)
1000	20	42000	2.11	100
2000	10	37800	2.07	99
3000	7	34020	2.04	97
4000	5	30618	2.02	96
5000	4	27556	1.99	94

由于碱性电解槽工艺技术已经十分成熟,很难通过技术革新降低成本。只能通过增大规模,减少设备材料来降低成本,通过减少台数来降低占地面积和建设施工成本,根据计算结果,电解槽规模扩大1000Nm³/h,制氢成本可降低约1%。所以在技术性能达标的情况下,选用大规模电解槽可以降低制氢成本。

3.4 产品方案影响分析

目前大多数企业电解水制氢副产的氧气都是排空处理。如果副产氧气提纯回收后利用或销售。不但提高能源利用率,同时增加经营收入,降低制氢成本。下面对氧气回收利用进行成本计算,分析对制氢成本的影响。

3.4.1 假定条件

氧气提纯设施固定投入 3000 万元; 对应产量 $1 \, \text{万 Nm}^3\text{/h}$, 年产 3000 万 $\text{Nm}^3\text{/h}$; 销售价格 600 元 /t, 折合 $0.6 \, \text{元 /Nm}^3$, 运维成本每年运维成本 $150 \, \text{万}$ 。

3.4.2 成本计算

氧气成本 = 固定成本 / (年产量 × 运行周期) + 运维成本 / 年产量 = 3000 万 / (3000 万 $Nm^3/h \times 20$) + 150 万 /3000 万 Nm^3 =0.10 元 Nm^3

氧气利润 = 氧气价格 – 氧气成本 =0.6 元 /Nm³ –0.10 元 / Nm³ =0.50 元 /Nm³

制氢成本 = 2.11 元 /Nm³-0.50 元 /Nm³ ÷ 2=1.86 元 /Nm³ 根据计算结构,回收副产氧气,可每方氢气抵减 0.5 元成本,制氢成本降低 12%。所以电解水制氢应充分考虑副产氧气的回收利用,实现经济效益的最大 化。

4 总结

通过制氢平准化成本分析,目前电解制氢的成本仍然远高于化石能源制氢,其成本主要由固定折旧和电耗成本两部分组成,合计达到 90% 以上,可通过以下措施降低制氢成本。

①通过建设风光制氢一体化,离网供电方式,降低电价成本;②选址风光资源富集区域,合理配套储能,延长有效运行时间;③选用规模大、能耗低电解槽,降低固定折旧、运行维护成本;④回收利用或销售副产氧气,实现利润最大化,抵减制氢成本。

作者简介:

刘雷(1986-),陕西榆林人,本科学历,中级工程师,从事煤制氢、电解水制氢、合成氨、甲醇技术管理工作。

中国化工贸易 2023 年 6 月 -51-