自动化技术在油气储运过程中的应用

俞 舟(西南油气田物资分公司,四川 成都 610042)

摘 要: 随着全球能源需求的不断增长,油气储运行业发展迅速,在此过程中,自动化技术的应用成为行业一大趋势。自动化系统通过引入先进的控制、监测和反馈机制,实现了生产过程的智能化和精细化管理,为行业带来了巨大的变革和提升。自动化技术在油气储运过程中的应用,显著提升了运输效率。

关键词:自动化技术;油气储运;应用策略

随着科技的不断发展,自动化技术已经广泛应用 于各个领域,油气储运行业也不例外。自动化技术能 够提高油气储运的效率、降低成本、保障安全等方面 发挥重要作用。本文将介绍自动化技术在油气储运过 程中的具体应用,并探讨其未来的发展趋势。

1 油气储运自动化系统的组成部分

1.1 传感器与执行器

传感器是油气储运自动化系统的重要组成部分,用于采集各种参数数据,如温度、压力、流量、液位等,以监测设备和管道的工作状态。执行器则用于根据控制信号执行相应的操作,如控制阀门的开关、泵站的启停等。

1.2 控制器

控制器是油气储运自动化系统的核心,负责对传感器采集的数据进行分析和处理,并基于设定的控制策略,生成相应的控制信号。控制器可以是基于硬件的可编程逻辑控制器(PLC)、远程终端单元(RTU)或计算机控制系统。

1.3 诵信网络

通信网络用于传输控制器和传感器之间的数据和控制指令。通信网络可以是有线网络如以太网、串行通信线路,也可以是无线网络如无线传感器网络(WSN)、卫星通信等。通过通信网络,不同部分的自动化系统可以实现数据交换和远程控制,实现集中控制和监测。

1.4 人机界面

人机界面用于与油气储运自动化系统进行交互, 提供操作和监测接口。人机界面通常是一个图形化显 示屏或计算机界面,显示实时数据、报警信息和操作 指令。通过人机界面,操作人员可以监控设备状态、 执行操作指令、查看报表等。

1.5 数据管理与分析

数据管理与分析模块用于对采集到的大量数据进行存储、处理和分析。这些数据可以用于设备状态监

测、维护计划、故障诊断和趋势分析等。数据分析可以通过数据挖掘、机器学习和专家系统等技术手段实现。

1.6 自动化执行与调度系统

自动化执行与调度系统用于对油气储运过程中的 任务和流程进行自动化执行和调度。通过自动化执行 与调度系统,可以自动化地调度运输车辆、控制泵站 和阀门运行、优化操作流程等,提高运行效率和减少 人为错误。

2 自动化技术在油气储运过程中的重要作用

2.1 储运过程的安全性

自动化技术可以提供实时监测和控制系统,对油气储运过程中的安全问题进行快速响应。通过使用自动化的监控和报警系统,可以监控关键参数,以确保储运设备的正常运行,并迅速识别和处理潜在的安全风险。

2.2 效率的提升

自动化技术可以优化油气储运过程的效率。通过 使用传感器、仪表和自动化控制系统,可以准确测量 和控制流量、温度、压力等关键参数,实现流程的自 动化调控和节约能源。此外,自动化技术还可以实现 远程监控和操作,减少人工干预,提高生产效率和资 源利用效率。

2.3 数据收集与分析

自动化技术可支持大规模数据的实时收集和分析。通过连接传感器和设备,自动化系统可以收集大量的运营数据,并通过数据分析技术提供有关机器状态、故障预测、设备维护等信息,帮助优化运营和提高设备的可靠性。

2.4 可追溯性和合规性

自动化技术可以提供完整的数据追溯性,帮助满足法规和合规要求。通过自动记录和报告操作数据,可以追溯生产和储运过程中的关键细节,保证合规性,并支持事后分析和审计。

中国化工贸易 2023 年 6 月 -105-

2.5 资源节约与环保

自动化技术在油气储运中可以减少能源消耗和环境影响。通过精确控制生产和运输过程的参数,自动化系统可以实现能源的有效利用,降低碳排放和环境污染。此外,自动化技术还可以减少人为错误和操作失误,提供可再生能源的更好集成和管理。

2.6 人员安全与减少工作风险

自动化技术的应用减少了人员在危险环境中的工作。自动化系统可以执行危险操作,如高温、高压或有毒的任务,消除了对人员的潜在危险和健康风险。

3 油气储运过程中存在的问题

①安全风险。油气储运涉及大规模的能源和化学 物质的储存、运输和处理,存在着爆炸、泄漏、火灾 等安全风险。设备故障、操作失误、自然灾害或恶意 破坏导致严重事故,对人员生命财产造成巨大威胁; ②环境影响。油气储运过程中的泄漏、废水处理、废 气排放等问题会对周围环境造成污染。油气产品的运 输也会引发海洋污染、土壤污染等环境问题,对生物 多样性和生态系统造成负面影响; ③能源消耗和碳排 放。油气储运过程需要大量的能源消耗,其中包括燃 油、电力等,这不仅增加了成本,还导致大量的碳排 放,对气候变化造成负面影响;④设备老化和维护难 题。油气储运设备的老化和维护问题是常见的挑战。 长时间运营和恶劣环境导致设备的磨损和退化, 需要 定期的检修和维护,但这往往需要停产和高昂的成本; ⑤安全管控和监测困难。油气储运覆盖面广,往往涉 及大规模的设施和广阔的区域, 使得安全管控和监测 变得复杂。准确监测流量、温度、压力等参数、实时 掌控安全风险是一项艰巨的任务;⑥法规和合规要求。 油气储运涉及的政策法规和合规要求繁多,需要针对 不同国家和地区的要求进行合规操作。对于跨国公司 来说,这增加了管理和运营的复杂性。

4 油气储运过程中的自动化技术

4.1 自动化控制系统

自动化控制系统是油气储运的核心部分,能够实现油气的自动输送、储存、装车等作业。通过自动化控制系统,可以实现油气的自动化计量、监控和调度等功能,提高油气储运的效率和精度。同时,自动化控制系统还能够实时监测油气储运设备的运行状态,及时发现并处理故障,保障油气储运的安全。

4.2 自动化检测技术

在油气储运过程中,对油气的温度、压力、流量 等参数进行实时监测是至关重要的,这些参数不仅关 系到油气的品质和安全,还直接影响到油气储运的效 率和经济效益。传统的监测方式往往依赖于人工操作,不仅效率低下,而且难以保证数据的准确性和实时性。随着科技的不断进步,自动化检测技术应运而生,为油气储运监测带来了革命性的变革。自动化检测技术能够实现对油气温度、压力、流量等参数的自动测量和记录,无需人工干预。同时,该技术可以将实时数据传输到控制中心,为分析人员提供及时、准确的数据支持。

通过自动化检测技术,可以实现以下几个方面的优势:其一,提高监测效率:自动化检测技术可以连续不断地监测油气储运过程中的各项参数,大大提高了监测的频率和准确性,有助于及时发现潜在的问题,防止事故的发生。其二,降低人工成本:自动化检测技术取代了传统的人工监测方式,降低了人力成本。同时减少了人为因素导致的数据误差和延误。其三,提高油气储运的可靠性和稳定性:自动化检测技术能够实时监测油气储运过程中的各项参数,及时发现异常情况并采取相应的措施,这有助于确保油气储运的可靠性和稳定性,减少意外事故的发生。其四,优化油气储运效率:通过实时监测油气的温度、压力、流量等参数,工作人员可以更好地了解油气储运过程中的实际情况,优化储运方案,提高储运效率。

4.3 自动化安全保护技术

在油气储运过程中,安全无疑是最为重要的因素 之一, 随着科技的不断进步, 自动化安全保护技术已 经成为保障这一过程安全的重要手段。这种技术能够 对油气储运设备进行全面的监测和控制,一旦发生异 常情况,能够自动启动安全保护装置,最大程度地保 障设备和人员的安全。首先,自动化安全保护技术能 够实时监测设备的运行状态。在油气储运过程中,设 备的安全运行是至关重要的。通过自动化安全保护技 术,可以实时监测设备的温度、压力、液位等关键参 数,一旦发现异常情况,能够及时预警,为工作人员 提供足够的时间采取相应的措施。其次, 自动化安全 保护技术能够实现快速响应,在油气储运过程中,一 旦发生泄漏、火灾等事故,后果不堪设想。而自动化 安全保护技术能够在第一时间发现异常情况,并迅速 启动相应的安全保护装置,如自动关闭阀门、启动灭 火系统等,最大程度地减少事故损失。此外,自动化 安全保护技术还能够提高油气储运的效率。通过自动 化监测和控制,可以精确地掌握设备的运行状态和油 气储运的实时情况,从而优化设备的运行参数和调度 计划,提高油气储运的效率。以油库为例,自动化安 全保护技术可以对油罐的温度和压力进行实时监测。

-106-

一旦发现温度或压力超过安全范围, 系统会自动启动 通风设备或紧急切断阀门等措施,从而避免事故的发 生。这种技术的应用,不仅能够保障油库的安全运行, 还能够提高油库的管理效率。

4.4 自动化应急响应技术

在油气储运过程中,安全始终是首要考虑的因素。 然而由于各种不可预测的因素, 突发情况时有发生, 如设备故障、泄漏事故等,这些突发情况不仅造成巨 大的经济损失,还对环境和人员安全造成严重威胁。 因此,如何快速、有效地应对这些突发情况,成为了 油气储运过程中的一大挑战。自动化应急响应技术的 出现,为解决这一难题提供了有力支持。该技术利用 先进的传感器、控制器和算法,能够实时监测油气储 运设施的运行状态,一旦发现异常情况,便迅速启动 应急程序。例如, 在发生泄漏事故时, 自动化系统可 以自动关闭相关的阀门, 启动通风设备以降低可燃气 体浓度,同时触发报警系统,通知相关人员迅速到场 处理。这些措施的实施,能够在很大程度上降低事故 的影响,减少损失。更为重要的是,自动化应急响应 技术能够将事故信息实时传输至控制中心。控制中心 的工作人员可以迅速了解事故情况,做出准确的判断 和决策,协调各方资源进行及时处理和救援。这种信 息传递的及时性和准确性,对于提高应急响应效率和 降低事故损失具有至关重要的作用。

5 自动化技术在油气储运过程中的实际应用 5.1 自动化监测

自动化监测系统使用传感器和监测设备对储存和 输送过程中的关键参数进行实时监测。例如,通过温 度传感器、压力传感器、液位传感器等检测设备状态, 实时监控存储罐、管道和泵站的工作情况,及时报警 和处理异常情况,确保设备运行的安全和稳定。

5.2 自动化控制

自动化控制系统根据监测数据和预设条件, 自动 调节和控制储运过程中的主要运作参数。例如、自动 控制系统根据温度变化自动调控加热系统, 保持储罐 内油气的适宜温度。自动化控制系统还可以控制泵站、 管道阀门和仪表等设备的启停、压力控制和流量调节, 确保储运过程的平稳运行。

5.3 远程监控与操作

自动化技术使得油气储运过程可以实现远程监控 和操作。通过远程监视系统,运维人员可以实时远程 监控和控制储运设备, 在发生异常或故障时迅速采取 措施。利用远程操作技术,运维人员可以对设备进行 远程操作和调试,减少人员在危险环境中的工作时间

和风险。

5.4 数据管理与分析

自动化系统收集和管理大量的运营数据,包括温 度、压力、流量、容量等。使用数据管理和分析工具, 可以对数据进行处理和分析, 生成有关设备状态、运 行效率和维护需求等信息。这些数据还可以用于趋势 分析、故障诊断和预测性维护,提高设备的可靠性和 运行效率。

5.5 智能维护与保养

自动化技术可以应用于油气储运设备的维护和保 养。通过使用传感器和自动化监测系统,可实现设备 状态的远程监测和故障诊断。此外, 自动化系统还可 以提供维护建议、自动生成保养计划、监督保养过程 等,优化设备维护和保养方案,提高设备的可靠性和 使用寿命。

5.6 人机界面与操作

自动化技术在油气储运中还具有友好的人机界面 和操作功能。通过可视化和直观的操作界面,运维人 员可以轻松地监控设备状态、执行操作指令和查看运 行数据。这使得操作人员能够更加高效地进行操作和 决策,提高运行效率和安全性。

6 结语

综上所述, 自动化技术在油气储运过程中的应用, 加强了生产过程的安全性和可靠性, 通过实时监控、 远程操作、数据分析以及自动化控制等,油气企业能 够更好地应对各方面的挑战,提高了资源利用效率, 减少了环境影响。而且,随着未来自动化技术的不断 演进和应用领域的扩大,油气储运行业将会进一步提 高竞争力,实现更可持续的发展。

参考文献:

- [1] 关怀.自动化技术在油气储运工程中的运用探究 []]. 中国设备工程,2023(07):201-203.
- [2] 田有盼. 自动化技术在油气储运工程中的应用 []]. 化工设计通讯,2021(04):14-15.
- [3] 陈曦,张志.油气储运工程中自动化技术的运用[]]. 中国石油和化工标准与质量,2021(05):132-134.
- [4] 陈宏. 自动化技术在油气储运工程中的应用 [[]. 化 工设计通讯,2020(02):20+36.
- [5] 冯建录, 胡景林, 魏远方. 油气储运过程中自动化 技术的应用分析 Ⅲ. 当代化工研究,2020(02):49-50.

作者简介:

俞舟(1987-),男,汉族,四川自贡人,大学本科, 工程师, 研究方向: 地面建设和油气储运。