高铟高铅氧化锌烟尘生产经济效益与实践

苏 文(来宾华锡冶炼有限公司,广西 来宾 546100)

摘 要: 针对高铅氧化锌烟尘、高铟氧化锌烟尘的成分不同,分别采用不同的处理方式,避免两种物料的 混合、导致铟浸出率及浸出渣含铅降低、影响铟冶炼和铅渣外卖的价格。高铅氧化锌烟尘先经过两段逆流水洗 脱氯,再采用废电解液进行两段浸出,锌浸出率均在80%以上,渣含铅平均在10%以上。高铟氧化锌烟尘先 经过两段逆流水洗脱氯,再采用浓硫酸进行两段浸出,锌浸出率均在70%以上,铟浸出率平均在70%以上, 渣含铟平均小于 0.3%。两种烟尘通过不同流程处理,实现两种氧化锌烟尘的最大化利用,提高经济效益。

关键词: 氧化锌; 铟回收; 高铅烟尘; 高铟烟尘

铟作为一种稀散金属, 其地表含量非常低, 多伴 生在其他有色金属硫化矿物中。在硫化锌精矿中, 铟 品位极低(约0.003%~0.013%)[1], 先在锌冶炼过程 中富集,才具有回收的价值。在湿法炼锌过程中,铟 主要富集在锌浸出渣中,通过回转窑还原处理,随着 氧化锌进入烟尘中,得以富集和回收。

在铟回收过程中,需要高温高酸对铟金属进行深 度浸出,为了减少浓硫酸的带入,保持整个锌铟系统 酸平衡, 生产协调上只能力保锌冶炼主系统的生产, 牺牲铟冶炼系统的一些生产指标,采用锌电解废酸代 替部分浓硫酸作为主要浸出反应剂, 但是锌电解废酸 中富含骨胶、锰离子、阳极泥等容易引起铟萃取乳化。 另外废液本身酸度不高,影响最大的是导致铟浸出率 降低,最终影响铟的回收率,据测算对比使用浓硫酸 反应, 回收率降低 5-10%。

为扭转上述加入电解废液引起的乳化及浸出率下 降的问题,最好的办法还是采用浓硫酸进行高酸浸出。 但是采用浓硫酸浸出则需要考虑如何低成本解决造成 锌湿法系统酸高的问题。采用白泥和石粉中和系统的 酸后续需要加大成本处理所产出渣,渣的处理成本非 常高。为解决锌系统酸过高的问题,本厂采用高铅氧 化锌代替部分锌焙砂,通过高铅氧化锌烟尘含有大量 氧化铅的特质,产出硫酸铅(铅渣外卖)开路部分硫 酸根。

1 原料

本厂所采用高铟氧化锌烟尘为回转窑处理锌浸出 渣所产出的锌烟尘,高铅氧化锌烟尘为外购铅含量高 的锌烟尘,其主要化学成分如表1所示。

由表 1 可知,两种烟尘最大的不同点在于含铟和 含铅量,高铟氧化锌烟尘含铟比较高,可用作回收铟 的原料; 高铅氧化锌烟尘含铅高, 可用于开路部分的 硫酸根。同时两个烟尘中的氟、氯含量较高,结合文 献资料, 氯元素主要以可溶性 ZnCl₂ 形态存在 [2], 氟 元素主要以不溶性 PbF₂、PbFCl 等形态存 [3]。

2 丁艺流程

根据高铅氧化锌烟尘、高铟氧化锌烟尘的成分特 点,分别采用不同的处理工艺。两种氧化锌烟尘分别 处理的优势在于: ①使用高铅氧化锌烟尘提高锌冶炼 的直收率,降低回转窑二次处理成本,从而最终降低 锌冶炼成本;②通过PbO,经酸浸出变成PbSO。带走 硫酸根离子,增加铟冶炼高酸浸出补充的浓硫酸,缓 解铟冶炼萃取乳化现象: ③避免两种物料混合, 提高 铟浸出率,同时减少浸出渣铟金属夹带,降低铟的损 失。

高铅氧化锌烟尘先经过两段逆流水洗工艺脱氟 氯,再采用废电解液对烟尘进行中性浸出、酸性浸出, 同时利用氧化锌烟尘的高铅特点,铅带走部分的硫酸 根,维持锌冶炼的酸平衡。

成分	Zn/%	In/%	As/%	F/%	Cl/%	Pb/%	SiO ₂ /%	Fe/%
高铟氧化锌烟尘	49.56	0.20	0.79	0.30	0.22	4.16	5.39	5.63
高铅氧化锌烟尘	50.99	-	0.68	0.71	0.52	7.10	-	-

表 1 氧化锌烟尘的主要化学成分

-49-

高铟氧化锌烟尘先经过两段逆流水洗工艺脱氟 氯,再采用浓硫酸对烟尘进行中性浸出、酸性浸出, 回收烟尘中的锌、铟金属。

3 基本原理

3.1 水洗脱氟氯

水洗脱氯是基于原料中的氯化锌和其它氯化物大部分溶于水,而氧化锌不溶于水的特点,用水洗涤使 氯离子进入溶液通过过滤与不溶的氧化锌分离。

3.2 高铟氧化锌烟尘浸出

在铟回收过程中,采用浓硫酸对烟尘进行两段浸出(中性浸出、酸性浸出),以降低其他杂质对铟浸出的影响,提高铟的浸出率及回收率。中性浸出以氧化锌浸出为主,主要反应为:

 $ZnO+H_2SO_4=ZnSO_4+H_2O$

 $Fe_2O_3+3H_2SO_4=Fe_2(SO_4)_3+3H_2O_4$

 $CdO+H_2SO_4=CdSO_4+H_2O$

Fe₂(SO₄)₃+6H₂O=2Fe(OH)₃+3H₂SO₄

酸性浸出以铟浸出为主,提高铟的回收率,主要反应为:

ZnO+H₂SO₄=ZnSO₄+H₂O

 $In_2O_3+3H_2SO_4=In_2(SO_4)_3+3H_2O$

 $Fe_2O_3+3H_2SO_4=Fe_2(SO_4)_3+3H_2O$

3.3 高铅氧化锌烟尘浸出

采用废电解液对高铅氧化锌烟尘进行两段浸出(中性浸出、酸性浸出),中性浸出以氧化锌浸出为主,主要反应为:

 $ZnO+H_2SO_4=ZnSO_4+H_2O$

 $Fe_2O_3+3H_2SO_4=Fe_2(SO_4)_3+3H_2O$

CdO+H₂SO₄=CdSO₄+H₂O

 $Fe_2(SO_4)_3 + 6H_2O = 2Fe(OH)_3 + 3H_2SO_4$

酸性浸出以提高锌的浸出率为主,同时利用铅带走部分硫酸根,主要反应为:

PbO+H₂SO₄=PbSO₄+H₂O

 $ZnO+H_2SO_4=ZnSO_4+H_2O$

 $Fe_2O_3+3H_2SO_4=Fe_2(SO_4)_3+3H_2O$

3.4 高铅氢化锌烟尘处理

3.4.1 水洗脱氟氯

在浸出过程中,氧化锌烟尘中的氟、氯大部分被浸出进入溶液,对锌冶炼产生不利影响。为减少氟离子、氯离子的影响,氧化锌烟尘先通过两段逆流水洗的处理工艺去除部分氟氯。在常温、液固比 6: 1、时间 10~20min 的工艺条件下,一次逆流水洗氯去除率

约 40%, 氟去除率约 32%, 锌损失率约 0.26%; 两次逆流水洗氯去除率约 76%, 氟去除率约 38%, 锌损失率约 0.52%。部分数据如表 2,表 3。

表 2 一次逆流水洗脱氯结果

序号	锌损失率 /%	氟去除率 /%	氯去除率 /%
1	0.65	41.18	45.07
2	0.25	33.82	30.99
3	0.16	26.47	47.89
4	0.27	29.41	45.07
5	0.20	26.47	45.07
6	0.04	36.76	29.58
平均	0.26	32.35	40.61

表 3 两次逆流水洗脱氯结果

序号	锌损失率 /%	氟去除率 /%	氯去除率 /%
1	0.99	45.59	74.65
2	0.52	39.71	70.42
3	0.33	33.82	83.10
4	0.44	32.35	78.87
5	0.51	36.76	77.46
6	0.36	38.24	76.06
平均	0.52	37.75	76.76

3.4.2 浸出

氧化锌烟尘中含有一定量的 SiO_2 ,在高温高酸下, SiO_2 反应形成硅酸胶体,对锌浸出及过滤具有一定的影响。为减少 SiO_2 的影响,氧化锌采用两段浸出(中性浸出和酸性浸出)处理。中性浸出温度 $65 \sim 80 \, ^{\circ}$ C,液固比 $7 \sim 9:1$,浸出时间 $2 \sim 3$ h,浸出始酸 $110 \sim 130$ g/L,终点 pH5.2 ~ 5.4 的工艺条件下进行,锌浸出率 $80 \sim 90 \, ^{\circ}$ C,,中性浸出在温度 $80 \sim 90 \, ^{\circ}$ C,,浸出时间 $5 \sim 6:1$,浸出时间 $5 \sim 6:1$,,并没出时间 $5 \sim 6:1$,,是出时间 $5 \sim 6:1$,,是出于证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以记述的证明,是可以证明,是可以记述的证明,是可以证

表 4 高铅氧化锌烟尘中性浸出结果

序号	锌浸出率 /%	渣含锌 /%
1	85.31	17.43
2	83.79	16.82
3	80.82	17.67
4	82.47	18.27
5	83.56	17.62
6	82.64	19.03
平均	83.10	17.81

表 5 高铅中浸渣酸性浸出结果

%	铅含量 /%	渣含锌 /%	锌浸出率 /%	序号
	14.31	5.09	82.48	1
	11.29	5.76	80.35	2
	8.67	5.04	81.52	3
	9.54	8.22	81.73	4
	9.54	4.25	80.38	5
	12.42	4.42	81.68	6
	10.96	5.46	81.36	平均
	8.67 9.54 9.54 12.42	5.04 8.22 4.25 4.42	81.52 81.73 80.38 81.68	3 4 5 6

3.5 高铟氧化锌处理

3.5.1 水洗脱氟氯

为减少氟离子、氯离子对锌冶炼的影响,氧化锌烟尘先通过两段逆流水洗的处理工艺去除部分氟氯。在常温、液固比 6:1、时间 10~20min 的工艺条件下,一次逆流水洗氯去除率约 56.50%,氟去除率约 4.58%,锌损失率约 0.94%;两次逆流水洗氯去除率约 70.00%,氟去除率约 7.10%,锌损失率约 1.55%。部分数据如表 6,表 7。

表 6 一次水洗脱氯结果

序号	锌损失率 /%	氟去除率 /%	氯去除率 /%
1	0.77	4.69	55.00
2	1.11	4.60	52.50
3	1.36	4.95	57.50
4	0.91	4.52	55.00
5	0.57	4.12	62.50
平均	0.94	4.58	56.50

表7两次水洗脱氯结果

序号	锌损失率 /%	氟去除率 /%	氯去除率 /%
1	1.28	7.64	67.50
2	1.72	7.11	70.00
3	1.83	7.27	70.00
4	1.68	7.15	67.50
5	1.23	6.31	75.00
平均	1.55	7.10	70.00

3.5.2 浸出

氧化锌烟尘中锌含量比较高,先采用中性浸出的方式溶解大部分的锌,使铟进一步富集。再通过酸性浸出将铟溶解,实现铟的回收。中性浸出温度 65~80℃,液固比 6~7:1,浸出时间 1~2h,浸出始酸 110~130g/L,终点 pH=3.0~4.5 的工艺条件下进行,锌浸出率 80~85%,铟浸出率 2.0~2.5%,中性浸出渣含锌 18~23%,含铟 0.5~0.8%,部分数据如表 7。酸性浸出在温度 80~90℃,浸出液固比 6~7:1,浸出时间 3~4h,始酸为 240g/L~250g/L,终酸 80g/L 的工艺条件下进行,锌浸出率 70~85%,铟浸出率 60~75%,酸性浸出渣含锌 10~16%,含铟 0.2~0.3%,部分数据如表 8。

表 7 高铟氧化锌烟尘中性浸出结果

序号	锌浸出率 /%	铟浸出率 /%	渣含锌/%	渣含铟 /%
1	82.37	2.31	22.51	0.62
2	84.26	2.16	22.50	0.51
3	81.89	2.52	18.59	0.75
4	83.54	2.33	19.53	0.80
5	81.67	2.14	18.57	0.69
6	82.33	2.27	19.89	0.47
平均	82.68	2.29	20.27	0.64

表 8 高铟氧化锌烟尘酸性浸出结果

序与	号	锌浸出率 /%	铟浸出率 /%	渣含锌 /%	渣含铟 /%
1		78.44	73.43	13.55	0.21
2		84.60	61.85	9.42	0.23
3		70.69	71.72	15.30	0.30
4		70.65	69.97	16.39	0.34
5		67.33	77.56	16.51	0.23
6		74.09	68.47	14.11	0.20
平土	勾	74.30	70.50	14.21	

4 结论

①高铅氧化锌烟尘、高铟氧化锌烟尘通过两段逆流水洗脱氯、脱氯效果达到70%以上;

②高铅氧化锌烟尘采用废电解液进行两段浸出,中性浸出锌浸出率在80~85%,酸性浸出锌浸出率在80~83%,浸出渣含锌小于6%,含铅平均在10%以上;同时铅带走部分硫酸根离子,平衡锌冶炼系统酸度;③高铟氧化锌烟尘采用浓硫酸进行两段浸出锌和铟,中性浸出锌浸出率在81~85%,铟损失2.14~2.52%;酸性浸出锌浸出率在70~80%,铟浸出率在65~75%,渣含铟平均小于0.3%;④通过采用不同流程处理氧化锌烟尘,高铅烟尘浸出渣含铅量得到提高,可作为含铅物料外卖;高铟烟尘提高铟的浸出率,降低铟在渣中的夹带损失。

参考文献:

- [1] 肖月华,赵贺永,程晓丽. 湿法炼锌浸出渣中回收Ag、In 方法研究[J]. 科技经济导刊,2015,27(5):54-55.
- [2] 王万坤, 王福春, 尹雨悦, 等. 氧化锌烟尘工艺矿物 学研究 [J]. 矿产保护与利用, 2018, (004):79-82,88.
- [3] 姚应雄,陈先友,朱北平,等.高氟氯次氧化锌烟 尘的湿法炼锌生产实践[J].中国有色冶金,2019, 48(4):5.

作者简介:

苏文(1978,07-), 男, 籍贯: 广西北流; 学历: 大学本科; 职称: 冶炼工程工程师; 主要研究方向: 锌、铟金属冶炼。